
Fairfield Run - Watershed Parameters

- •Contour Interval = 10'
- •D. A. = 120 acres
- •Forest (green) = 45 acres
- •Residential, 1/3 acre lots (yellow) = 50 acres
- •Commercial/Institutional (orange) = 25 acres

•Tsf, L = 300 feet, n=0.24 (dense grass), s = 20'/300' = 0.067 ft/ft

- •Tsc, L = 1000 feet, unpaved, s = 100'/1000' = 0.10 ft/ft
- •Tch, L = 3100 ft, V = 8 fps

United States Department of Agriculture

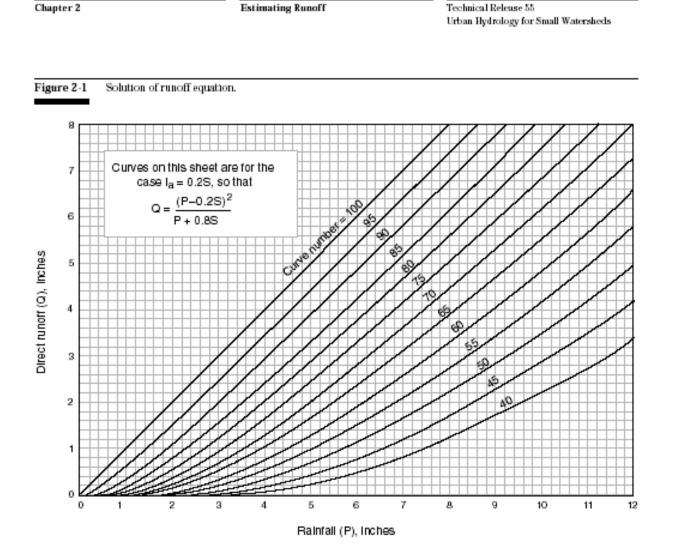
Natural Resources Conservation Service

Conservation Engineering Division

Technical Release 55

June 1986

Urban Hydrology for Small Watersheds


TR-55

To show bookmarks which navigate through the document.

Click the show/hide navigation pane button

click the bookmarks tab. It will navigate you to the contents,

chapters, rainfall maps, and printable forms.

Cover type

Table 2-2 addresses most cover types, such as vegetation, bare soil, and impervious surfaces. There are a number of methods for determining cover type. The most common are field reconnaissance, aerial photographs, and land use maps.

Treatment

Treatment is a cover type modifier (used only in table 2-2b) to describe the management of cultivated agricultural lands. It includes mechanical practices, such as contouring and terracing, and management practices, such as crop rotations and reduced or no tillage.

Hydrologic condition

Hydrologic condition indicates the effects of cover type and treatment on infiltration and runoff and is generally estimated from density of plant and residue cover on sample areas. Good hydrologic condition indicates that the soil usually has a low runoff potential for that specific hydrologic soil group, cover type, and treatment. Some factors to consider in estimating the effect of cover on infiltration and runoff are (a) canopy or density of lawns, crops, or other vegetative areas; (b) amount of year-round cover; (c) amount of grass or close-seeded legumes in rotations, (d) percent of residue cover; and (e) degree of surface roughness.

Technical Release 55

Chapter 2

Technical Release 55 Urban Hydrology for Small Watersheds

					Runo	ff depth f	or curve n	umber of	_				
Rainfall	40	45	50	55	60	65	70	75	80	85	98	95	98
							-inches						
1.0	0.00	0.08	0.08	0.08	0.00	0.00	0.08	0.03	0.08	0.17	0.32	0.56	0.79
1.2	.08	.00	.08	.08	.00	.08	.03	.07	.15	.27	.46	.74	.99
1.4	.08	.00	.08	.08	.00	.02	.06	.13	.24	.39	.61	.92	1.18
1.6	.08	.00	.08	.08	.01	.06	.11	.20	.34	.52	.76	1.11	1.38
1.8	.00	.00	.00	.08	.03	.09	.17	.29	.44	.65	.93	1.29	1.58
2.0	.00	.00	.00	.02	.06	.14	.24	38	.56	.80	1.09	1.48	1.77
2.5	.00	.00	.02	.08	.17	.30	.46	.65	.89	1.18	1.53	1.96	2.27
3.0	.00	.02	.09	.19	33	.51	.71	.96	1.25	1.59	1.98	2.45	2.77
3.5	.02	.08	.20	.35	.53	.75	1.01	1.30	1.64	2.02	2.45	2.94	3.27
4.0	.06	.18	.33	.53	.76	1.03	1.33	1.67	2.04	2.46	2.92	3.43	3.77
4.5	.14	.30	.50	.74	1.02	1.33	1.67	2.05	2.46	2.91	3.40	3.92	4.26
5.0	.24	.44	.69	.98	1.30	1.65	2.04	2.45	2.89	3.37	3,88	4.42	4.76
6.0	.50	.80	1.14	1.52	1.92	2.35	2.81	3.28	3.78	4.30	4.85	5.41	5.76
7.0	.84	1.24	1.68	2.12	2.60	3.10	3.62	4.15	4.69	5.25	5.82	6.41	6.76
8.0	1.25	1.74	2.25	2.78	3,33	3.89	4.46	5.04	5.63	6.21	6.81	7.48	7.76
9.0	1.71	2.29	2.88	3.49	4.10	4.72	5.33	5.95	6,57	7.18	7.79	8.40	8.76
10.0	2.23	2.89	3.56	4.23	4.90	5.56	6.22	6.88	7.52	8.16	8.78	9.48	9.76
11.0	2.78	3.52	4.26	5.00	5.72	6.43	7.13	7.81	8.48	9.13	9.77	10.39	10.76
12.0	3.38	4.19	5.00	5.79	6.56	7.32	8.05	8.76	9.45	10.11	10.76	11.39	11.76
13.0	4.08	4.89	5.76	6.61	7.42	8.21	8,98	9.71	10.42	11.10	11.76	12.39	12.76
14.0	4.65	5.62	6.55	7.44	8,30	9.12	9.91	10.67	11.39	12.08	12.75	13.39	13.76
15.0	5.33	6.36	7.35	8.29	9.19	10.04	10.85	11.63	12.37	13.07	13.74	14.39	14.76

Table 2-1 Runoff depth for selected CN's and rainfall amounts \mathcal{V}

U Interpolate the values shown to obtain runoff depths for CN's or rainfall amounts not shown.

Table 2-2a

Runoff curve numbers for urban areas 1/

Cover description		Curve numbers for hydrologic soil group								
•	erage percent									
	ervious area ≌	А	в	С	D					
Fully developed urban areas (vegetation established)										
Open space (lawns, parks, golf courses, cemeteries, etc.)⊉:										
Poor condition (grass cover < 50%)		68	79	86	89					
Fair condition (grass cover 50% to 75%)		49	69	79	84					
Good condition (grass cover > 75%)		39	61	74	80					
inpervious areas	•	<i>ac</i>	.		00					
Paved parking lots, roofs, driveways, etc.										
(excluding right-of-way)		98	98	98	98					
Streets and roads:		20	20	80	80					
Paved; curbs and storm sewers (excluding										
right-of-way)		98	98	98	98					
Paved; open ditches (including right-of-way)		83	89	92	93					
Gravel (including right-of-way)		76	85	82	93 91					
Graver (including right-of-way)		70	82	87	89					
Dirt (including right-of-way)		72	82	87	89					
Western desert urban areas:		60	77	85	88					
Natural desert landscaping (pervious areas only) #		63	11	85	55					
Artificial desert landscaping (impervious weed barrier,										
desert shrub with 1- to 2-inch sand or gravel mulch		00	02	0.0	0.0					
and basin borders)		96	96	96	96					
Urban districts			~		0.8					
Commercial and business		89	92	94	95					
Industrial	. 72	81	88	91	93					
Residential districts by average lot size:										
1/8 acre or less (town houses)		77	85	90	92					
1/4 acre		61	75	83	87					
1/3 acre		57	72	81	86					
1/2 acre		54	70	80	85					
1 acre		51	68	79	84					
2 acres	. 12	46	65	77	82					
Developing urban areas										
Newly graded areas										
(pervious areas only, no vegetation) ₽		77	86	91	94					
dle lands (CN's are determined using cover types										
similar to those in table 2-2c).										

 $^{\scriptscriptstyle 1}$ Average runoff condition, and $I_{\rm a}$ = 0.2S.

2 The average percent impervious area shown was used to develop the composite CN's. Other assumptions are as follows: impervious areas are directly connected to the drainage system, impervious areas have a CN of 98, and pervious areas are considered equivalent to open space in good hydrologic condition. CN's for other combinations of conditions may be computed using figure 2-3 or 2-4.

5 CN's shown are equivalent to those of pasture. Composite CN's may be computed for other combinations of open space cover type.

4 Composite CN's for natural desert landscaping should be computed using figures 2-3 or 2-4 based on the impervious area percentage (CN = 98) and the pervious area CN. The pervious area CN's are assumed equivalent to desert shrub in poor hydrologic condition.

Composite CN's to use for the design of temporary measures during grading and construction should be computed using figure 2.3 or 2.4 based on the degree of development (impervious area percentage) and the CN's for the newly graded pervious areas.

Worksheet 2: Runoff curve number and runoff

Project		Ву				Date					
Location		Checked				Date					
Check one: Prese	nt 🗆 Developed					1					
1. Runoff curve n	umber										
Soil name and hydrologic	. Cover description			CN -	2 	Area	Product of CN x area				
group	(cover type, treatment, and hydrologic co	ndition; percent	Table 2-2	Figue 2-3	Figure 2-4	□acres □mi ²	on x area				
(appendix A)	impervious; unconnected/connected imp	ervious area ratio)	Tab	Ē	Fig	□%					
ン Use only one CN source	eperine			Fotal	s 🗭						
CN (weighted) = _total tota	product ==	;	Use	CN	•						
2. Runoff											
		Storm #1		Stor	m #2		Storm #3				
Frequency	yr										
	(24-hour) in										
(Use Panu	in d CN with table 2-1, figure 2-1, or 2-3 and 2-4)										
equations	2-3 anu 2-4)										

Technical Release 55 Urban Hydrology for Small Watersheds

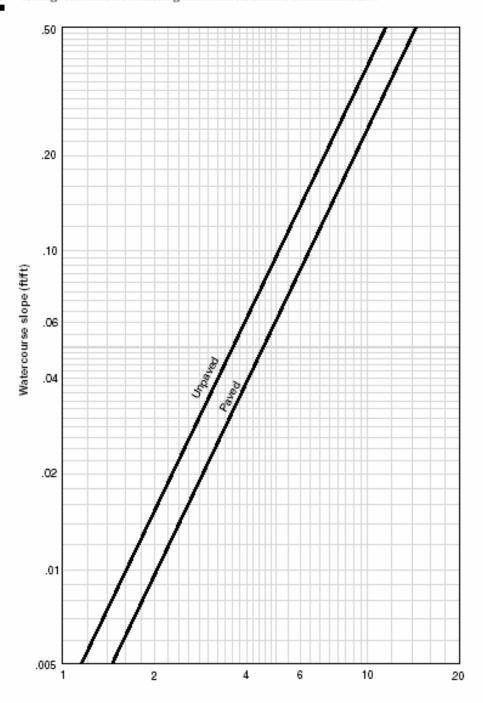


Figure 3-1 Average velocities for estimating travel time for shallow concentrated flow

Average velocity (ft/sec)

(210-VI-TR-55, Second Ed., June 1986)

Technical Release 55 Urban Hydrology for Small Watersheds

Sheet flow

Sheet flow is flow over plane surfaces. It usually occurs in the headwater of streams. With sheet flow, the friction value (Manning's n) is an effective roughness coefficient that includes the effect of raindrop impact; drag over the plane surface; obstacles such as litter, crop ridges, and rocks; and erosion and transportation of sediment. These n values are for very shallow flow depths of about 0.1 foot or so. Table 3-1 gives Manning's n values for sheet flow for various surface conditions.

Table 3-1	Roughness coefficients (Manning's n) for
	sheet flow

Surface description	n 1/
Smooth surfaces (concrete, asphalt,	
gravel, or bare soil)	0.011
Fallow (no residue)	0.05
Cultivated soils:	
Residue cover ≤20%	0.06
Residue cover >20%	0.17
Grass:	
Short grass prairie	0.15
Dense grasses 2	0.24
Bermudagrass	0.41
Range (natural)	0.13
Woods≇	
Light underbrush	0.40
Dense underbrush	0.80

¹ The n values are a composite of information compiled by Engman (1986).

² Includes species such as weeping lovegrass, bluegrass, buffalo grass, blue gram grass, and native grass mixtures.

³ When selecting n, consider cover to a height of about 0.1 ft. This is the only part of the plant cover that will obstruct sheet flow. For sheet flow of less than 300 feet, use Manning's kinematic solution (Overtop and Meadows 1976) to compute T_t :

$$T_{t} = \frac{0.007(nL)^{0.8}}{(P_{2})^{0.5}s^{0.4}}$$
 [eq. 3-3]

where:

- T_t = travel time (hr),
- n = Manning's roughness coefficient (table 3-1)
- L = flow length (ft)
- P₂ = 2-year, 24-hour rainfall (in)
- s = slope of hydraulic grade line (land slope, fl/ft)

This simplified form of the Manning's kinematic solution is based on the following: (1) shallow steady uniform flow, (2) constant intensity of rainfall excess (that part of a rain available for runoff), (3) rainfall duration of 24 hours, and (4) minor effect of infiltration on travel time. Rainfall depth can be obtained from appendix B.

Shallow concentrated flow

After a maximum of 300 feet, sheet flow usually becomes shallow concentrated flow. The average velocity for this flow can be determined from figure 3-1, in which average velocity is a function of watercourse slope and type of channel. For slopes less than 0.005 fl/ft, use equations given in appendix F for figure 3-1. Tillage can affect the direction of shallow concentrated flow. Flow may not always be directly down the watershed slope if tillage runs across the slope.

After determining average velocity in figure 3-1, use equation 3-1 to estimate travel time for the shallow concentrated flow segment.

Open channels

Open channels are assumed to begin where surveyed cross section information has been obtained, where channels are visible on aerial photographs, or where blue lines (indicating streams) appear on United States Geological Survey (USGS) quadrangle sheets. Manning's equation or water surface profile information can be used to estimate average flow velocity. Average flow velocity is usually determined for bankfull elevation.

Worksheet 3: Time of Concentration (T_c) or travel time (T_t)

Project	Ву	Date
Location	Checked	Date
Check one: Present Developed Check one: T _c T _t through subarea Notes: Space for as many as two segments per flow typ Include a map, schematic, or description of flow Sheet flow (Applicable to Tc only)		
Segment ID 1. Surface description (table 3-1) 2. Manning's roughness coefficient, n (table 3-1) 3. Flow length, L (total L † 300 ft) ft 4. Two-year 24-hour rainfall, P2 in 5. Land slope, s ft/ft 6. $T_t = -\frac{0.007 (nL)}{P_2 0.5 s 0.4}$ Compute T_t hr Shallow concentrated flow		
Segment ID		
 Surface description (paved or unpaved)	+	=
Channel flow		
$\begin{array}{c} \text{Segment ID} \\ 12. \ \text{Cross sectional flow area, a} & \dots & ft^2 \\ 13. \ \text{Wetted perimeter, } p_W & \dots & ft \\ 14. \ \text{Hydraulic radius, } r= \frac{a}{-1} \ \text{Compute } r & \dots & ft \\ 15 \ \text{Channel slope, s} & \frac{p_W}{-1} & \text{Compute } r & \dots & ft \\ 16. \ \text{Manning's roughness coefficient, n} & \dots & ft \\ 16. \ \text{Manning's roughness coefficient, n} & \dots & ft \\ 17. \ V = \underline{-1.49 \ r}^{2/3} \ \text{s}^{-1/2} & \text{Compute } V & \dots & ft's \\ 18. \ \text{Ftow tength, L} & \dots & ft \\ 19. \ T_t = \underline{-L} & \text{Compute } T_t & \dots & hr \\ 20. \ \text{Watershed or subarea } T_c \ \text{or } T_t \ (\text{add } T_t \ \text{in steps 6, 11, ar}) \\ \end{array}$		=

(210-VI-TR-55, Second Ed., June 1986)

Chapter 4

Graphical Peak Discharge Method

Figure 4-1

This chapter presents the Graphical Peak Discharge method for computing peak discharge from rural and urban areas. The Graphical method was developed from hydrograph analyses using TR-20, "Computer Program for Project Formulation-Hydrology" (SCS 1983). The peak discharge equation used is:

$$q_p = q_u A_m QF_p$$
 [eq. 4-1]

where:

qp = peak discharge (cfs)

- $q_u = unit peak discharge (csm/in)$
- A_m = drainage area (mi²)

Q = runoff(in)

F_p= pond and swamp adjustment factor

The input requirements for the Graphical method are as follows: (1) T_c (hr), (2) drainage area (mi²), (3) appropriate rainfall distribution (I, IA, II, or III), (4) 24-hour rainfall (in), and (5) CN. If pond and swamp areas are spread throughout the watershed and are not considered in the T_c computation, an adjustment for pond and swamp areas is also needed.

Peak discharge computation

For a selected rainfall frequency, the 24-hour rainfall (P) is obtained from appendix B or more detailed local precipitation maps. CN and total runoff (Q) for the watershed are computed according to the methods outlined in chapter 2. The CN is used to determine the initial abstraction (Ia) from table 4-1. Ia / P is then computed.

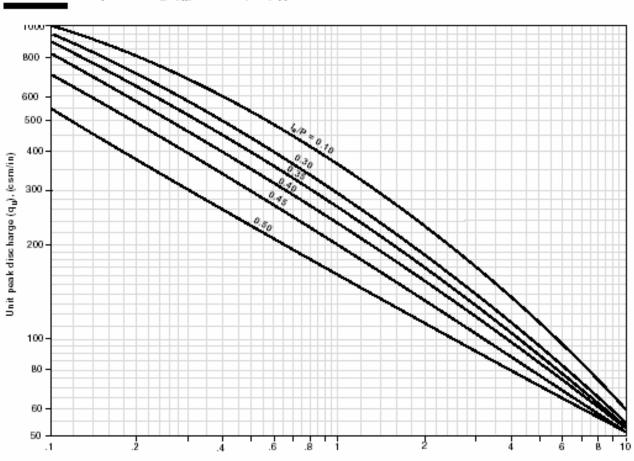
If the computed I_A / P ratio is outside the range in exhibit 4 (4-I, 4-IA, 4-II, and 4-III) for the rainfall distribution of interest, then the limiting value should be used. If the ratio falls between the limiting values, use linear interpolation. Figure 4-1 illustrates the sensitivity of I₄ / P to CN and P.

Peak discharge per square mile per inch of runoff (q_n) is obtained from exhibit 4-I, 4-IA, 4-II, or 4-III by using T_c (chapter 3), rainfall distribution type, and I_a/P ratio. The pond and swamp adjustment factor is obtained from table 4-2 (rounded to the nearest table value). Use worksheet 4 in appendix D to aid in computing the peak discharge using the Graphical method.

Variation of I_s / P for P and CN 1.0 0.8 0.6 la/P CN = 48 0.4 50 60 70 0.2. 80 90 0 ļ 9 14 $\frac{1}{3}$ 5 13 15 Rainfall (P), inches

Table 4-1 Ia	values for runo	ff curve numbers
--------------	-----------------	------------------

Curve I _a
number (in)
70
71 0.817
720.778
73
74 0.703
75
76
77 0.597
78
79 0.532
80
81 0.469
82 0.439
83 0.410
84 0.381
85 0.353
86 0.326
87 0.299
88
89 0.247
90 0.222
91 0.198
92 0.174
93 0.151
94 0.128
95 0.105
96 0.083
97 0.062
98 0.041


Project	Ву	D	ate
Location	Checked	D	ale
Check one: Present Developed			
1. Data			
Drainage area A _m =	mf ² (acres/6	40)	
Runoff curve numberCN =	(From works	heet 2)	
Time of concentrationT _C =	hr (From wo	rksheet 3)	
Rainfail distribution	(I, IA, II III)		
Pond and swamp areas sprea throughout watershed	percent of A _m (acres	s or mi ² covered)
	Storm	n #1 Storm #2	Storm #3
2. Frequency	yr		
3. Rainfall, P (24-hour)	In		
4. Initial abstraction, I _a (Use CN with table 4-1)	in		
5. Compute I _a /P			
6. Unit peak discharge, q _u (Use T _C and I _a / P with exhibit 4)	csm/ln		
7. Runoff, Q (From worksheet 2) Figure 2-6			
8. Pond and swamp adjustment factor, F _p (Use percent pond and swamp area with table 4-2. Factor is 1.0 for zero percent pond ans swamp area.)			
9. Peak discharge, qp	tt ³ /s		
(Where $q_p = q_u A_m QF_p$)			

Worksheet 4: Graphical Peak Discharge method

Chapter 4

Graphical Peak Dischage Method

Technical Release 55 Urban Hydrology for Small Watersheds

 $\textbf{Exhibit 4-II} \quad \text{Unit peal discharge } (q_n) \text{ for NRCS} (\text{SCS}) \text{ type II rainfall distribution} \\$

Time of concentration (T_{g}) , (hours)

Project				Location				Ву		Date	Date				
Check on	ie: 🗆 Pres	ent 🗆 Dev	veloped	Frequency (yr)				Checked		Date					
Subarea name	Drainage area	Time of concen- tration	Travel time through subarea	Downstream subarea names	Travel time summation to outlet	24-hr rain- fall	Runoff curve number	Runoff		Initial abstraction					
	A _m (mi ²)	T _C (hr)	T _t (hr)		ΣT _t (hr)	P (in)	CN	Q (in)	A _m Q (mi²—in)	l _a (in)	I _a /F				
		From work	rehaat 3				From wor			From table 5-1					

Worksheet 5a: Basic watershed data

				Worksh	ieet 5	b: Ba	isic w	aters	shed o	data								
Project				Location						By				Di	ite			
Check	:one: 🗆 F	Present 🗌	Developed	Frequency	(yr)					Chec	:ked			D	ate			
Subarea	Bi	asic watersh	ed data use/	d1/														
name	Subarea T _C	ΣT _t to outlet	l _a /P	AmQ														
	(hr)	(hr)		(mi ² —in)				Dis	charges	at select	ed hydro cfs)	graph tin	nes <u>3</u> /		-			
Compo	site hydrogi	raph at outle	t															

Worksheet 5a. Rounded as needed for use with exhibit 5.
 Enter rainfall distribution type used.
 Hydrograph discharge for selected times is A_mQ multiplied by tabular discharge from appropriate exhibit 5.

D-6

Thu		E	xhi	bit	5-II	I: Ta	abul	lar l	hyd	rogi	apl	h uni	it di	isc	harg	ges	(csn	ı/in) fo	r ty	pe	II ra	inf	all d	istı	ribu	tion	—ce	onti	nue	d	
(hr)	1 11.0	1	11.6	- 1	2.0	1	12.2	- 1	12.4	1	2.6	12.7	1: 2.8	3.0	13.2	13.4	13.6	13.8	14.0	14.3	14.6	15.0	15.5	1	6.5		.7.5	1	9.0	0.0 22	.0	5.0
		IA/	(P =	0.10]								* *	t TC	= 1	.0 HR	* *	*										IA/P	= 0.	10	+ -	- +
0.0 .10 .20	11 10	15 13 13 12	20 17 17 16	29 24 23 22	35 27 26 24	47 33 30 28			168 95 82	231 144 123 105	289 202 176	260 232	357 3 306 3 281 3	313 340 332	239 293	175 222 238		103 126 136	83 98 105	63 72 76	50	40 43				23 24 24 24 24	21 22 22	20 20 20 20	17 18 18	15 16	12 12 12 12 12	0 0 1 1
.40 .50 .75 1.0	8 7 5	11 10 8 7	14 13 11 8	19 18 14 11	21 20 16 12	23 22 17 13	27 25 19 14	32 30 21 16	42 38 25 17	61 53 30 19	91 78 38 22	132 114 53 25	159 2 76 3	253			237 251 293 256	195	138 149 208 272	143	70 74 99 144	51 53 66 90	39 40 46 56	32 33 36 41	28 29 31 33	25 25 27 29	23 23 24 26	21 21 22 23	18 19	16 17	12 12 13 13	1 1 2 4
3.0	- + -	IA/	P =	- + 0.30]					4	+	15 9 +	- + -	- + - TC	+	+ 0 HR	* *	44 19 12 + *	78 27 14	157 58 22	120 44 +	214 113	214	231	- + -		- 58 + -	- + - IA/P	23 26 29 - + -	20 21 23 - + - 30	17 + -	
0.0 .10 .20 .30	D D D D	0 0 0	0 0 0	0 0 0	1 0 0	4 0 0	16 3 2 1	42 12 9 6	83 32 24 18	137 66 52 41	195 113 93 75	243 168 143 120	218 2 193 2	279 271	271	178 213 225 234	143 169 180 191	136 145	113 119	79 88 92 96	66 72 75 78	55 59 60 62	47 49 50 51	42 43 44 44	38 39 39 40	34 35 35 36	32 32	30 30 30 31		24 24	19 19 19 19	0 1 1 1
.40 .50 .75 1.0	0 0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	1 1 D D	4 3 0 0	14 10 1 0	32 24 4 0	61 49 12 1	25				222 230 239 182	228	146 155 198 234	115 149	86 90 112 150	67 69 82 104	53 54 61 72	46 47 50 56	41 42 44 47	37 37 39 42	34 35	31 31 32 34	29	25 26	19 19 20 20	2 2 4 7
1.5 2.0 2.5 3.0	0 0 0	0 0 0	0 0 0	0000		0000	0000	D D D D	0 0 0		0 0 0	õ	0	0 0 0	4 0 0	18 1 0 0		20 2 0	49 7 0	2	187 87 13	171 62	152 199 158	192		47 55 69 103	47 54 73	46 56	37 41	29 31 34	22 23 24 26	13 17 18 18
		İA/	(P =	0.50]							·. +	* * *	t TC	= 1	.0 HR	* *	*										IA/P	= 0.	50	.+ -	- +
0.0 .10 .20 .30	D D D D	0 0 0	0 0 0	0000	0 0 0	0 0 0	1 0 0 0	7 1 1 D	21 5 4 3	42 15 12 9	71 33 26 20	101	126 0	160 134 123		138 149 153	123 134 137 140	110 120 123	100 108 111	87 93 95	77 82 84 86		60	55 57 58	50 52 53	46 47 47 48	43 44 44	41 42	38 38 38	34 34 34	28 28 28 28	1 1 1 1
.40 .50 .75 1.0	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	D D D	0 0 0	2 1 0 0	6 5 2 0	16 12 5 0	31 25 12 1	75 64 39 7	120 109 78 26	145 139 115 59	148 146 136 96	140		108	91 94 101 117	77 79 84 97	66 67 70 78	59 60 62 66	54 55 59	49 50 51 54	46 47	43 43 44 46	39 40	36	29 29 29 29	2 3 4 8
1.5 2.0 2.5 3.0		0 0 0 +					0 0 0 +	D D D D + - + -	0 0 0 0 + ·	0 0 0 +	0 0 0 +	0 0 0 +					26 3 0 + * *		25 2 0	64 10 1	34 6	32	125 89	77 93 117 122			58 66 77 + -		45 49 53	41 43 45	31 33 35 37 + -	17 24 27 27 - +

Appendix A

Hydrologic Soil Groups

Soils are classified into hydrologic soil groups (HSG's) to indicate the minimum rate of infiltration obtained for bare soil after prolonged wetting. The HSG's, which are A, B, C, and D, are one element used in determining runoff curve numbers (see chapter 2). For the convenience of TR-55 users, exhibit A-1 lists the HSG classification of United States soils.

The infiltration rate is the rate at which water enters the soil at the soil surface. It is controlled by surface conditions. HSG also indicates the transmission rate—the rate at which the water moves within the soil. This rate is controlled by the soil profile. Approximate numerical ranges for transmission rates shown in the HSG definitions were first published by Musgrave (USDA 1955). The four groups are defined by SCS soil scientists as follows:

Group Asoils have low runoff potential and high infiltration rates even when thoroughly wetted. They consist chiefly of deep, well to excessively drained sand or gravel and have a high rate of water transmission (greater than 0.30 in/hr).

Group Booils have moderate infiltration rates when thoroughly wetted and consist chiefly of moderately deep to deep, moderately well to well drained soils with moderately fine to moderately coarse textures. These soils have a moderate rate of water transmission (0.15-0.30 in/hr).

Group Csoils have low infiltration rates when thoroughly wetted and consist chiefly of soils with a layer that impedes downward movement of water and soils with moderately fine to fine texture. These soils have a low rate of water transmission (0.05-0.15 in/hr).

Group Dsoils have high runoff potential. They have very low infiltration rates when thoroughly wetted and consist chiefly of clay soils with a high swelling potential, soils with a permanent high water table, soils with a claypan or clay layer at or near the surface, and shallow soils over nearly impervious material. These soils have a very low rate of water transmission (0-0.05 in/hr).

In exhibit A-1, some of the listed soils have an added modifier; for example, "Abrazo, gravelly." This refers to a gravelly phase of the Abrazo series that is found in SCS soil map legends.

Disturbed soil profiles

As a result of urbanization, the soil profile may be considerably altered and the listed group classification may no longer apply. In these circumstances, use the following to determine HSG according to the texture of the new surface soil, provided that significant compaction has not occurred (Brakensiek and Rawls 1983).

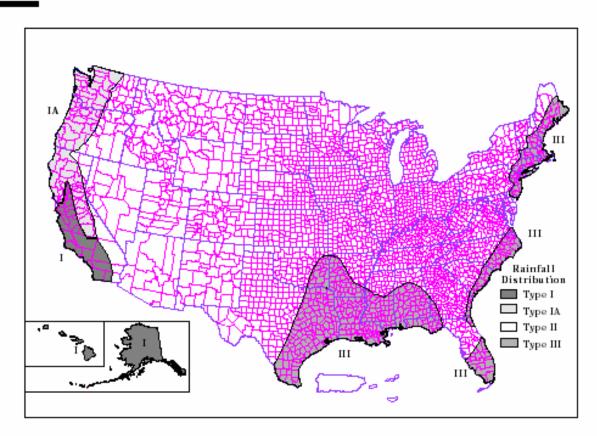
HSG	Soil textures
Α	Sand, loamy sand, or sandy loam
в	Silt loam or loam
с	Sandy clay loam
D	Clay loam, silty clay loam, sandy clay, silty clay, or clay

Drainage and group D soils

Some soils in the list are in group D because of a high water table that creates a drainage problem. Once these soils are effectively drained, they are placed in a different group. For example, Ackerman soil is classified as A/D. This indicates that the drained Ackerman soil is in group A and the undrained soil is in group D.

T .5.111		Ex	hibi	it 5	-II:	Tal	bula	r hy	/dro	ogra	ph (unit	dis	scha	arge	s (c	sm/i H TIM	in) i	for	typ	e II	raiı	nfal	l dis	strib	outio	on–	-cor	ntin	ued		
TRVL- TIME (hr)1	1	1.3	1	1.9		12.1		12.3		12.5		12.7	1	13.0		13.4		13.8		14.3		15.0		16.0		17.0	1	8.0	- 2	ח.חי	- 7	6.0
		IA/	P =	0.10)								* *	* TC	. = 0	.5 HR) * *	*										IA/P	= 0	.10		
0.0 .10 .20 .30	17 16 14	23 22 19 18	32 30	57 51	94	170 140	308 252 116	467 395 207	529 484 332	507 499 434	402 434 477	297 343	226 265 378	140 162 238	96 108 149	74 80	61 65	53 55 62	47 49	41 42 45	36 36 39	32 33 34 34	29 29 30 31	26 26	23 23	21 21 22 22	20 20	19 19 19 19	16 16 17 17	14 14 14 15	12 12 12 12 12	0000
.40 .50 .75 1.0	12 11 9 7	15 15 11 9	21 20 14 12	29 28 19 16	33 31 21 17	40 37 24 19	53 48 27 21		141 118 37 27			118	412	378 319	271 374	328	107 119 244 322	169	64 68 117 172	76	56	36 37 43 49	32 32 35 38	28 29 31 32	25 25 28 29	22 23 25 26	21 21 22 23	20 20 21 21	17 17 18 19	15 15 16 16	12 12 12 12	
3.0	5 3 2 1	7 4 3 1	8 6 4 2 +	11 7 5 3	8 5 3	13 8 6 4	14 9 6 4	15 10 7 4	17 10 7 5	19 11 8 5	21 12 9 6	9 6 +	- +	12 8	23 15 9	35 18 11	13	123 36 16	66 20	297 150 37	280 244 86	77 181 278 198	263	87 182	96	29 33 39 56	40	33		17 19 20 21	13 14 15 16	10 11 11
	. +			0.30]								* *	* TC	= 0	.5 HR	* *	*	+	+	+	+	+	+	+-			IA/P			- +	4
0.0 .10 .20 .30	0 0 0	0 0 0	0 0 0	1 D D D	9 1 1 0	53 6 4 0	157 37 26 3	117	248 194	372	416 382	391 388	330 349	218 244	150	122	81 92 97 117	71 79 82 94	70 72	6D 62	53	46 47 48 50		38 39 39 41	34 35 36	31 32 32 33	30 30 30 31	28 29 29 29	25 26 26	22 22 22 23	19 19 19 19	
.40 .50 .75 1.0	0 0 0	0 0 0	0 0 0	D D D D	0 0 0	0000	2 0 0	13 1 1 0	47 9 4 0	116 34 14 0	211 89 41 2	170 89		341 270		225 268	127 161 207 285			76 87	64 70	51 54 57 67	45 47 48 53	41 42 44 46	37 38 39 42	33 34 35 38	31 31 32 34	29 30 30 31	26 27 27 28	23 24 24 25	19 19 19 19	000
1.5 2.0 2.5 3.0	0	0 0 0	0 0 0 0 +	D D D	000	0000	0000	0000		0	D	0 0 0	0	0	30 0 0	3 0 0	183 18 1 0	59 5 0	21 1	221 84 13	245 174 56	96 182 230 157	172 217	103 163	101	41 47 54 68	46 53	34 38 42 46	30 32 34 37	26 28 30 31	20 22 23 25	8 16 18 18
				0.50									* *	* TC	= 0	.5 HR	* *	*				+						IA/P	= 0		- +	+
0.0 .10 .20 .30			0 0 0	D D D D	0 0 0 0	2000	26 1 1 0	89	170 65	217 135	229 190		179 205	144 170	119 137	104 115	93 101 105 117		78 83 85	70 74	64 67 68	59	55 56	51	46 47	43 44 44 45	42	40 40 40 41	36 36 37 37	32 32 32 33	28 28 28 28	000000000000000000000000000000000000000
.40 .50 .75 1.0	0 0 0	0 0 0	0 0 0	D D D	0 0 0	0000	0000	0 0 0	6 4 1 0	25 18 7 0	63 48 22 1	90 47	155 133 80 11	184 142	177	152 164	144	124	97 108	84 91	79	64 65 68 76	58 59 61 65	54 55 59	50 50 51 54	45 45 47 49	43 43 44 45	41 41 42 43	37 38 39 39	33 33 34 35	28 28 28 28	0 0 2
1.5 2.0 2.5 3.3	0 0 0	0 0 0	0 0 0 0 +	D D D	0 0 0	0000	0000	0 0 0		0000	D D D D		0000	0	Ō	ō	97 18 0 0	47 3 0	11	134 44 7	146 95 29	95 125 140 86	135	122	95	54 58 65 76	65	58	49	37 39 41 43		10 21 26 27
	RA	INFA		YPE	= II			- +		- +	- 4		* *	* TC	= 0	.5 HR	{ * *	*		- +		- +		- 7	- +			HEET			Ŧ	- +

Б


...

. .

• •

Exhibit A: Hydrologic Soil Groups for the United States

			1	1
DISCOVERY	D	DOBOTHEAC	DUCKHILLD	EAGLESPRING B
DISHNER	D	DOROVAN	DUCKSTON A/D	EAGLETON
DISHNO DISHPAN	<u>c</u>	DORRANCE	DUELM	EAGLEVIEW
DISTELL	č	DORSB	DUETTE	EAGLEWILE D EAGLEWING
DISWOOD	D	DORSET	DUFFERN	EAGLEYE
DITCHCAMP	C	DOSA D	DUFFYMONTC	EAGLEYED EAGREEK
DITHOD		DOSAMIGOSD	DUFFYMONT, DryD	EAKIN
DITNEY		DOSEWALLIPS	DUFURB	EALY B
DIVISION		DOSLOMASC	DUGGINSD DUGUESCLIND	EAPA B
DIVOT	C	DOSSD	DUGWAYC	EARLMONT
DIXALETA	D	DOSSMANB	DUKES	EARPB
DIXBORO		DOTLAKE D	DULA DULAC	EASBY.CC
DIXON		DOTSERO	DULANDY	EASPUR
DIXONVILLE	C	DOTY B	DULCE	EAST LAKE
		DOUBLEDIAD	DULEYLAKEC	EASTABLEB
DOBALT	<u>B</u>	DOUBLEO DOUCETTE	DULLAXEB	EASTCHOP
DOBBINS	Ξ.	DOUDLEB	DULLES	EASTHAM
DOBENT	ΰĎ	DOUGAL	DUMFRIES	EASTEINE
DOBIE	B	DOUGANC	DUMONTD	EASTPINE
DOBSON	D	DOUGCITYB	DUMPS, TailingsB DUNBARD	EASYCHAIR
DOCAS DOCENA	<u>B</u>	DOUGCLIFF	DUNBAR	EATONCREEKD
DOCKLAKE			DUNBRIDGEB DUNCC	EAUCLAIREA EAUGALLIED
DOCPAR	. B	DOUGHERTY	DUNCANNON	EBADLOW
DODD	D	DOUGHTY	DUNFORDC	EBALB
DODES		DOUGLASB	DUNGANB	EBBERTC/D
DODGE DODGECREEK	B	DOUHIDE	DUNGENESS	EBBINGC
DODGEVILLE			DUNKIRK B DUNKLEBER	EBBSB EBICD
DODSON	C	DOUTHIT	DUNLATOP	EBODA B
DODY	C/D	DOWDE	DUNLATOP	EBODA, Stony
DOE		DOWELLTOND	DUNNBOTB	EBROD
DOEL DOGIECREEK	G	DOWNER	DUNSMUIR B	ECHAWA
		DOWNEYGULCH	DUNSMUIR, NongravellyC DUNTON	ECHETA
DOGLAKE DOGMOUNTAIN	.:ĉ	DOWNSOUTH	DUPLIN	ECKHART B ECKLUND B
DOGTOOTH	D	DOWNSVILLE	DUPO C	ECKLUND B
DOGUE	<u>C</u>	DOWPER B	DUPREED	ECKMANB
DOKER DOLBEE, Sandy Substratum	G	DOYLESTOWND DOYN	DURADOS	ECKRANT
DOLBEE	. B	DRAGSTONC	DURAND	ECKVOLLB ECLETOD
DOLEKEI	B	DRAKE	DURANGO B	ECLIPSE B
DOLEN	B	DRAKESFLAT	DURANTD	ECOLAC
DOLES	<u>C</u>	DRAKESPEAKB	DURAZOA	ECONB
DOLLAR DOLLARD	- č	DRAMMEN	DURBIND DURELLE	ECONFINA
DOLLARHIDE	Ď	DHASCO	DURKEE	EDA A
DOLLARHIDE DOLLYCLARK	ĉ	DRAXB/C	DURRSTEIN	EDALFREDA
DOLMAN		UHENA	DURSTONC	EDALGOC
DOLUS DOME		DRESDEN	DUSEN B DUSKPOINT A	EDDINGS
DOMENGINE	- Ë	DREWSEY R	DUSLERC	EDDY
DOMERIE	ΞB	DREWSGAPC	DUSON	EDEMAPSC
DOMEZ	B	DREXEL B DRIFTWOOD C/D	DUSTON	EDENBOWERD
DOMINGUEZ	Ç	DRIFTWOODC/D	DUSTYB	EDENTONC
DOMINSON		DRIGGS	DUTCHATT	EDENVALLEY
DOMO		DRIVER	DUTCHENRY	EDGEHILI C
DOMPIER	C	DROEM	DUTCHFLATC	EDGEHILLC
DONA ANA	C	DROVAL	DUTCHJOHN B	EDGEMERED
DONAHUE	<u>c</u>	DRUMB	DUTEK	EDGEWATERC
DONALD		DRURYB DRY LAKEC	DUTTON	EDGEWICK C EDGINGTON C/D
DONEGAN		DRYADINE	DUZEL	EDINBURG
DONERAL DONICA		DAYBED	DWARF	EDISTOC
DONICA	B	DRYBUCK	DWORSHAKB	EDJOBE
DONKEHILL DONLONTON	<u>D</u>	DRYBURGB	DYED	EDMINSTERD
DOWNEL		DRYCK A DRYDEN B	DYERHILLB DYLAN	EDMORED EDMUNDSTONB
DONNEL DONNELSVILLE	. B	DOVEALLS D	DYLAN A	EDOM C
LONNING	D	DRYHOLLOWB	EACHUSB	EDOMC EDROYD
DONNYBROOK	D	DRYNC	EADC	EDSON
DOOH	- B	DUARTC	EAGARB	EDWARDS
DOOLIN		DUBACH	EAGLECAP	EDWARDSVILLE
DOONE	ΞŇ	DUBBS	EAGLECOREEK	EELCOVE
DORERTON	B	DUBBS, FloodedC	EAGLELAKEB	EELWEIRC
DORITTY		DUBINAG	EAGLEPOINTD	EENREED
DORNA. DORNA, Thin	<u>B</u>	DUBLONB	EAGLEROCKC	EEPC
DOROSHIN		DUCKABUSH	EAGLESNESTC EAGLESON	EFFIE EFFINGTON

Figure B-2 Approximate geographic boundaries for NRCS (SCS) rainfall distributions

Rainfall data sources

This section lists the most current 24-hour rainfall data published by the National Weather Service (NWS) for various parts of the country. Because NWS Technical Paper 40 (TP-40) is out of print, the 24-hour rainfall maps for areas east of the 105th meridian are included here as figures B-3 through B-8. For the area generally west of the 105th meridian, TP-40 has been superseded by NOAA Atlas 2, the Precipitation-Frequency Atlas of the Western United States, published by the National Ocean and Atmospheric Administration.

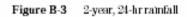
East of 105th meridian

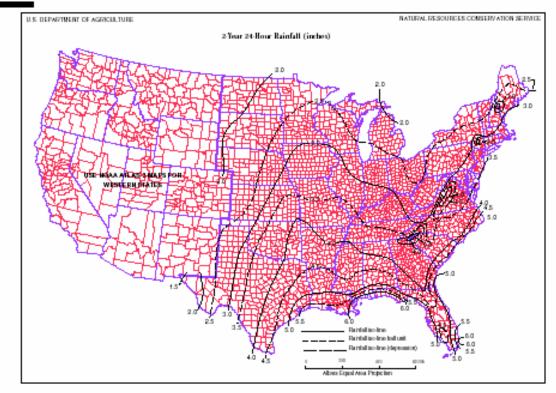
Hershfield, D.M. 1961. Rainfall frequency atlas of the United States for durations from 30 minutes to 24 hours and return periods from 1 to 100 years. U.S. Dept. Commerce, Weather Bur. Tech. Pap. No. 40. Washington, DC. 155 p.

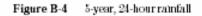
West of 105th meridian

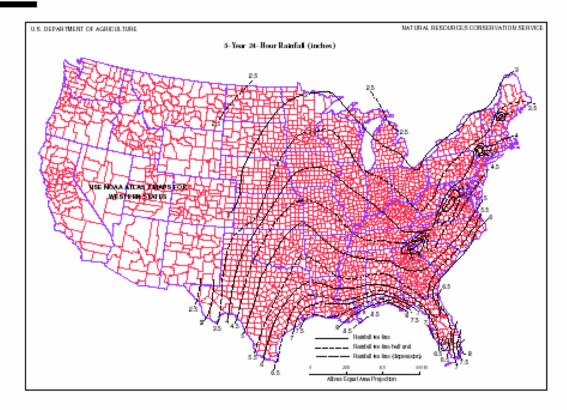
Miller, J.F., R.H. Frederick, and R.J. Tracey. 1973. Precipitation-frequency atlas of the Western United States. Vol. I Montana; Vol. II, Wyoming; Vol III, Colorado; Vol. IV, New Mexico; Vol V, Idaho; Vol. VI, Utah; Vol. VII, Nevada; Vol. VIII, Arizona; Vol. IX, Washington; Vol. X, Oregon; Vol. XI, California. U.S. Dept. of Commerce, National Weather Service, NOAA Atlas 2. Silver Spring, MD.

Alaska

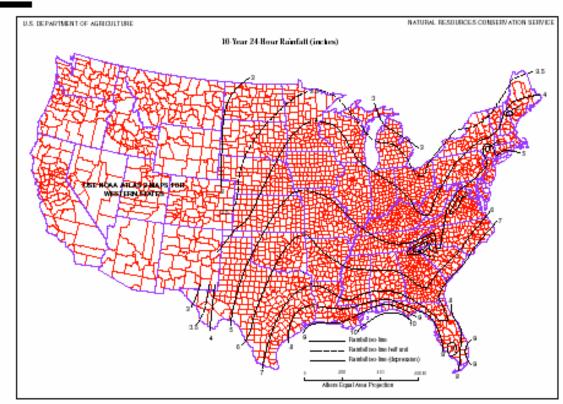

Miller, John F. 1963. Probable maximum precipitation and rainfall-frequency data for Alaska for areas to 400 square miles, durations to 24 hours and return periods from 1 to 100 years. U.S. Dept. of Commerce, Weather Bur. Tech. Pap. No. 47. Washington, DC. 69 p.

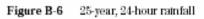

Hawaii

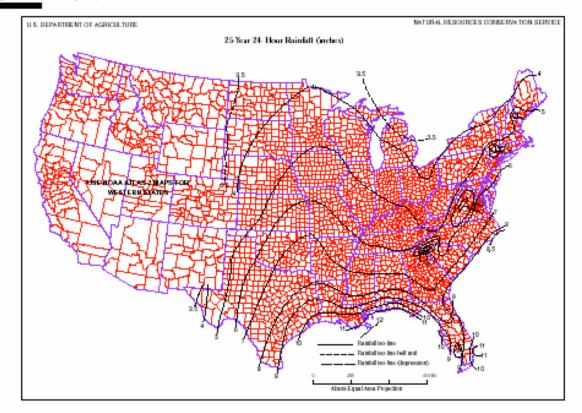

Weather Bureau. 1962. Rainfall-frequency atlas of the Hawaiian Islands for areas to 200 square miles, durations to 24 hours and return periods from 1 to 100 years. U.S. Dept. Commerce, Weather Bur. Tech. Pap. No. 43. Washington, DC. 60 p.

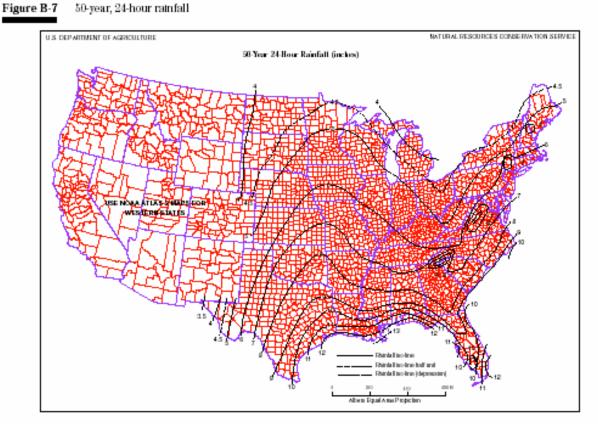

Puerto Rico and Virgin Islands

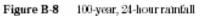
Weather Bureau. 1961. Generalized estimates of probable maximum precipitation and rainfall-frequency data for Puerto Rico and Virgin Islands for areas to 400 square miles, durations to 24 hours, and return periods from 1 to 100 years. U.S. Dept. Commerce, Weather Bur. Tech. Pap. No. 42. Washington, DC. 94 P.

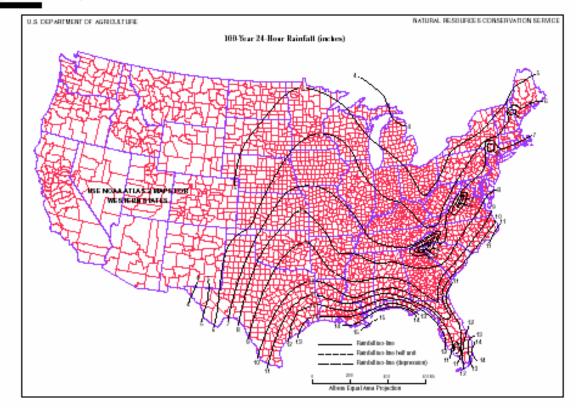







(210-VI-TR-55, Second Ed., June 1986)




Figure B-5 10-year, 24-hour rainfall

(210-VI-TR-55, Second Ed., June 1986)