Flooding & Inundation Mapping

Andrew Homsey, Jordan Martin, & Jerry Kauffman Lewes DE, Oct. 30, 2017

Flooding and Inundation

- Hurricane inundation
- Fluvial flooding
- Sea level rise
- How will this affect DelDOT's assets?
- Sandy and a hypothetical "worst-case" Sandylike storm

Other inundation scenario studies

- This effort aims to complement other major studies on flooding and SLR:
 - DNREC
 - DGS
- Here, the focus is on DelDOT infrastructure

Inundation -- SLOSH

- Sea, Lake, and Overland Surge from Hurricanes
- "A computerized model developed by the National Weather Service (NWS) to estimate storm surge heights and winds resulting from historical, hypothetical, or predicted hurricanes."

SLOSH

- Does not include rainfall, riverine flow, or wind driven waves.
- Does include tide information.
- Accuracy has been found to be within ±20%.

SLOSH

- Dynamic model
- For our use we focused on the static MOMs
 - MEOW: Maximum Envelope of Water
 - Summarizes max inundation for given storm intensity, speed, and direction.
 - MOM: Maximum of MEOWs
 - Worst effects of all potential storms

Height: Outside Grid

NOAA's National Hurricane Center

- Used SLOSH to generate inundation scenarios (MOMs).
 - Maximum of MEOWs--composite "worst case"
- Up-scaled the coarse data using LiDAR data.
- Provided series of inundation scenarios for storm categories.

Storm Surge Inundation Map

Esri, DeLorme, NaturalVue | NOAA/NWS/NHC

Creating Resilient Water Utilities & SEPA

A word on datums

- Important to pin down what you're measuring against.
 - Inundation predictions,
 - Tide gauge info,
 - DEM heights,
 - etc.
- Tide stage adds/subtracts.

A word on datums

- Tidal heights—from long term tidal data (MSL, MHHW, MLLW)
- Ellipsoidal heights—From the mathematical figure of the earth (GPS)
- Geoidal heights—From the actual (modeled) earth (NAVD 27, NAVD 88)
- When water rises, we care about topographic heights—depth relative to ground surface.

https://vdatum.noaa.gov/docs/datums.html

Riverine Flooding

- Use FEMA "100" and "500" year flood zone data.
- Overlay on hurricane inundation results.
- These effects can be independent, or they could be additive.

Mapping Procedures

- Create a statewide map series.
- Use NOAA's coastal inundation data.
 Focus on Category 1 and Category 3 storms.
- Estimate the effect of storm inundation with 0.5m, 1.0m, and 1.5m SLR.
- Combine with FEMA flood zones.

Mapping Procedures

- Maps include
 - Cat 1 and Cat 3 storms inundation zones
 - Fluvial flood zones
 - Roads flooded by scenario
 - Effects on bridges (overtopping).

USACE and NOAA SLC Curves - Gauge NJ, Atlantic City: 96 yrs USACE Curves computed using criteria in EC 1165-2-212

http://www.globalchange.gov/browse/sea-level-rise-tool-sandy-recovery

Effects on DelDOT infrastructure

- Cat 1 and Cat 3 storms
- 100 and 500 year floods
- Road miles, major routes
- Road miles, all roads
- Bridges (riverine flooding only)

Bridge Vulnerability

County	Local	Major	Minor	Railroad	Other	Total
Kent	79	31	30	12	18	170
New Castle	59	45	75	40	41	260
Sussex	44	26	10	10	8	98
Total	182	102	115	62	67	528

By type

Bridge Vulnerability

County	Municipal	Railroad	State	Other	Total
Kent	0	12	129	29	170
New Castle	2	40	161	60	263
Sussex	1	10	77	10	98
Total	3	62	367	99	531

By ownership

10 yr yr 10 yr 10 yr hapte 10 yr 0 yr 10 yr 10 yr 500 yr 50 yr Not topped Not topped 100 yr 10 yr 500 yr 500 yr 000 erce ter Not topped Not topped oxwood Rd Not topped Not topped Not topped

Not topped

Wilmingtor

Road Miles in Flood Zones (100 Year, 500 Year) and Potential Hurricane Storm Surge (Category 1 - 3) Inundation Areas

Road Miles in Potential Inundation Zones (100 Year, 500 Year Flood Zones Plus Category 3 Hurricane Storm Surge Inundation Areas) v. All Road Miles

Table 5.2 Total road miles potentially mundated by flooding in Delaware					
	New Castle	Kent	Sussex	Statewide	
Miles inundated by					
100-year Flood	120	88	229	437	
500-year Flood	161	114	258	533	
Cat. 1 Storm	42	46	124	212	
Cat. 2 Storm	113	83	253	450	
Cat. 3 Storm	188	149	456	794	
500-year Flood plus Cat 3 Storm	243	183	494	919	
% of total miles					
100-year Flood	4%	5%	9%	6%	
500-year Flood	6%	7%	10%	7%	
Cat. 1 Storm	2%	3%	5%	3%	
Cat. 2 Storm	4%	5%	10%	6%	
Cat. 3 Storm	7%	9%	18%	11%	
500-year Flood plus Cat 3 Storm	9%	11%	19%	13%	

Table 5.2 Total read miles not antially inundeted by flooding in Delaware

Major Route Miles (Federal and State Roads) in Flood Zones (100 Year, 500 Year) and Potential Hurricane Storm Surge (Category 1 - 3) Inundation Areas

Major Route Miles (Federal and State Roads) in Potential Inundation Zones (100 Year, 500 Year Flood Zones Plus Category 3 Hurricane Storm Surge Inundation Areas) v. All Major Route Miles

Table 5.3 Major route miles potentially inundated by flooding in Delaware

	New Castle	Kent	Sussex	State
Miles inundated by				
100-year Flood	43	18	58	119
500-year Flood	53	24	65	143
Cat. 1 Storm	20	10	41	71
Cat. 2 Storm	48	25	66	138
Cat. 3 Storm	79	48	102	229
500-year Flood plus Cat 3 Storm	95	55	108	258
% of major roads				
100-year Flood	6%	5%	10%	7%
500-year Flood	7%	6%	11%	8%
Cat. 1 Storm	3%	3%	7%	4%
Cat. 2 Storm	7%	6%	11%	8%
Cat. 3 Storm	11%	12%	17%	13%
500-year Flood plus Cat 3 Storm	13%	14%	18%	15%

Sandy, Oct. 30, 2012

Sandy was Super

- Weak Jetstream caused rare westerly path
- Warm water increased energy
- Large size was anomalous
- Winter storm inland slowed progress
- Struck highly populated region at full moon
 - Battery Park, Manhattan: 2.79m surge, 4.28m height with peak tide

Hall, T. M., and A. H. Sobel (2013), On the impact angle of Hurricane Sandy's New Jersey landfall, Geophys. Res. Lett., 40, 2312–2315, doi:<u>10.1002/grl.50395</u>.

Sandy Scenarios

- Use existing tide gage information to derive peak surge surface.
- Merge DEM data with peak surge to estimate "actual" Sandy flood effects.
- Based on peak surge in NYC, estimate worst case for DE.
- Map effects of "worst-case", Sandy-like strike on DE Bay.

Estimated Actual and Max Potential Road Flooding Superstorm Sandy

Estimated Actual and Max Potential Major Route Flooding Superstorm Sandy

Conclusions

- Flood and inundation scenarios indicate a significant impact on Delaware roads and other infrastructure.
- Will affect response times and evacuations.
- Climate change may well exacerbate rainfall and storm frequency and power.
- Sea level rise will potentially be a factor, but smaller than storm intensity.

Thanks

- DelDOT, Silvana Croope
- CADSR—Eric Best & Dave Racca
- Jordan Martin & Jerry Kauffman
- DGS—Naomi Bates
- NOAA NHC—Arthur Taylor, Jamie Rhome