Brandywine-Christina Healthy Water Fund Model-based Prioritization

Andrew Homsey* Jerry Kauffman, Kash Srinivasan, Martha Narvaez Delaware Estuary Science and Environmental Summit Cape May, NJ Jan. 24th, 2017

The big picture

- The Brandywine-Christina Healthy Water Fund seeks to develop sustainable funding to help restore waters (in 20 years)
 - Fishable
 - Swimmable
 - Potable
- Modeling is a key part of the process

Model what?

- On a watershed basis, determine
 - Environmental loads of constituents of concern
 - Effects of strategies (BMPs) to reduce impairments
 - Level of BMP implementation to meet WQ goals
 - Approximate costs to get these BMPs in the ground

Model why?

- Predict
 - The loads impacting streams
 - Reductions (and costs) expected from strategies
- Prioritize
 - Where should efforts focus
 - What types of strategies to employ
- Protect
 - Protect the water quality and quantity
 - Protect the process: transparent, repeatable, and adaptive

TMDLs

The Water Fund

- Focus on agricultural sources
 - Nitrogen
 - Phosphorous
 - Sediment
- Focus on agricultural BMPs
 - Lower cost
 - Higher ROI

Pike Creek WQIP Example BMP implementation Nitrogen Reductions

- \$236,820,066 per year for MS4 urban stormwater BMPs
- ~\$2,300,000 per year for agricultural BMPs (MapShed study)
- Differential: 2 orders of magnitude (10²)

Potential annual MS4 BMP costs in the White Clay based on Pike Creek study

Pike Creek WQIP Example BMP implementation Flow Reductions

Cost per	Pike Creek	WCC sq.	WCC acres	Acre-feet in	Cost to	Cost to
acre-foot	acre-feet			2 inch rain	capture 1% of	capture 0.1%
	treated by			event	runoff for 2	of runoff for
	BMPs				inch event	2 in ch event
\$640,000	5.5	107	68,480	11,413	\$ 73,045,333	\$7,304,533*

*Translates to

- over 55 miles of level lip spreaders,
- DEP grant funding for over 25 miles of stream restoration, or
- over 200 constructed wetland projects.

....then use MapShed to derive input data for the GWLF-E model

MapShed

• SWAT (Soil and Water Assessment Tool)

MapShed BMPs

•	Туре	Ŧ	unit	•	Unit	CostLow	•	Unit	CostHi	-
•	Cover crops		ha		\$	86.4	19	\$	128.	49
	Conservation Tillage		ha		\$	6.7	72	\$	98.	84
	Nutrient management		ha		\$	7.4	11	\$	24.	71
•	Riparian forest buffer		km		\$	40.3	86	\$	371.	89
	Animal fencing		km		\$	2,405.1	1	\$	2,405.	11

- пранан ранстэ
- Stream fencing

Red Clay Creek					
Constituent 💌	Target	reduction 💌	Unit 💌	Cost	: to target 💌
Nitrogen	\$	88,657	kg	\$	1,995,017
Phosphorus	\$	5,223	kg	\$	254,247
Sediment	\$	1,658	tonne	\$	169,388
				\$	2,418,652

White Clay Cre	ek				
Constituent 💌	Targ	et reduction 💌	Unit 🔽	Cos	t to target 💌
Nitrogen	\$	143,953	kg	\$	1,751,112
Phosphorus	\$	5,563	kg	\$	293,896
Sediment	\$	1,807	tonne	\$	284,552
				\$	2,329,560

Brandywine, W	/est Branch			
Constituent 💌	Target reduction 💌	Unit 💌	Cost to	target 💌
Nitrogen	66100	kg	\$	602,699
Phosphorus	1864	kg	\$	134,377
Sediment	88	tonne	\$	12,912
			\$	749,988

Brandywine, Ea	ast Branch			
Constituent 💌	Target reduction 💌	Unit 💌	Cost to	o target 💌
Nitrogen	19,165	kg	\$	217,325
Phosphorus	0	kg	\$	-
Sediment	567	tonne	\$	62,098
			\$	279,423

Brandywine, M	lain Stem			
Constituent 💌	Target reduction 💌	Unit 💌	Cost to	target 💌
Nitrogen	0	kg	\$	-
Phosphorus	0	kg	\$	-
Sediment	619	tonne	\$	106,447
			\$	106,447

Conclusion

- Modeling gives an objective, transparent way to prioritize project areas.
- Models can help
 - Ballpark costs for clean water.
 - Estimate the reductions for various strategies.
 - Inform (not determine) the process of picking projects the Fund will support.

Thanks to the Partnership

- William Penn Foundation
- Brandywine Conservancy
- **Brandywine Red Clay Alliance**
- Stroud Water Research Center
- Chester County Water Resources Association, Chester County Conservation District
- Natural Lands Trust, Academy of Natural Sciences of Drexel U, Open Space Institute, Partnership for the Delaware Estuary