

Pipelines

Transmission Mains Feeder Distribution

Min. 25 ps; DE Polici Savice Commusioni
35 psi Great Lakes, 10 state standards

Nomal 60-65psi

Max Sopri

Velocity Max = 25fps Nomel = 5-10 fps

Water Demand

Distribution of lute Jamond in NCC (Hord, 1918)

Legary Demand Postote
Residential 33 49%

Commercial 14 20

Industrial 12 18

Onocconted to (loss) 9 13

68 my d 100% Postotel

Per Capita Water Demand
Normal 100- 150 apred
Heak 150-300 apred Peaking Foder 1.5 - 2.0

Per duelling

Normal 300 apd/du @ 3 people/du

Peak 450 - 200 gpd/du

(Tidente, 1998)

New Castle County Population'

Normal PF Pack

1990 450,000 pap. x 150gpcd = 67.5mpl.5 = 101mgd

2000 500,000 pap x 150gpcd = 75mgd 1.5 = 112mgd

No. NCC	Supply / [emand Pr	ojection	,7		
lear.	(mgd) Sypoly	(mgd)				
2000	73.0	86.0	-13.0	Volume (my) -780		
2010	73.0	88.0	-15.0	-900		
2020	73,0	90.0	-17.0	-1,020		
* Assumes 60 day drought period						

see Fifth Report to Governor's General Assembly www. wv. udel.edu publications

New Castle County Population'

Normal PF Pack

1990 450,000 pap. x 150gpcd = 67.5mpl.5 = 101mgd

2000 500,000 pap x 150gpcd = 75mgd 1.5 = 112mgd

No. NCC	Supply / [emand Pr	ojection	,7		
lear.	(mgd) Sypoly	(mgd)				
2000	73.0	86.0	-13.0	Volume (my) -780		
2010	73.0	88.0	-15.0	-900		
2020	73,0	90.0	-17.0	-1,020		
* Assumes 60 day drought period						

see Fifth Report to Governor's General Assembly www. wv. udel.edu publications

Design of Water Tank Storage Volume for the City of Newark

Given: Population of Newark, DE

= 28,000

Normal Per Capita Water Use

Fireflow Requirement

= 150 gpcd = 5000 gpm over 5 hours

= Volume of Demand in Excess of Maximum Daily

Water Tank Storage Volume

Demand

+ Fire Storage + Emergency Storage for 1 day at Average Daily Demand

= Peaking Factor*(Population)*(Normal Per Capita Water

Use) * (Factor of Safety)

+ Fire Flow Rate*(Duration of Fire)

+ Population * (Normal Per Capita Water Use)

= 2.0*(28,000)*(150 gpcd)*(0.25)+ 5000 gpm*(60 min/hr)*(24 hr/day)*(5hr)*(1 day/24 hr)+ 28,000*(150 gpcd)

= 2.1 MG

+ 1.5 MG

+ 4.2 MG

= 7.8 MG

Therefore, total volume of storage tanks in the City of Newark should be 7.8 million gallons. We'll review this in class on Wednesday.

Pumping Stations

- Centrifiquel

· Axial

Horseponer

hp = QXH where: Q = Discharge (chr)

Y = Spec. wt.

H = Total Dynamic Hood

(efficiency) x Actual HP = Theoretical HP

550 = ft-16 (TDH)

Sec Conversion:

Pumping Head TOH = h, + hx TDH = Total Dynamic head (H)

h_ = Total static head

hf = Friction head losses

hy = Yelocity head (V2)

The description head (V2)

Dounload EPANET 2 hate-Distribution Model

htp//www.epa.gov/ORD/ARMAZ/wswrd/epanet.html

1) Download executable program.
2) Dowload Dser manual (Lookmark).
3) Print out ch. 2, tutorial, only.

Selection of Pumping Units 191

mps is between 50 and e.. reported. Pump efficiency pump.²³

aracteristics and is required ows. This is done by plotting o characteristic curves. The ad curve and the pump-head 1 the pump will be operating. nt is also as close as possible 5-28.

Discharge

(b) sump operations of equal pumps.

el. For series operation at a heads added by each pump. ied by the number of pumps when two pumps are used in 1 given system head curve is

●EXAMPLE 5-6

A pumping station is to be designed for an ultimate capacity of 1200 gpm at a total head of 80 ft. The present requirements are that the station deliver 750 gpm at a total head of 60 ft. One pump will be required as a standby.

OSolution |

- (a) The total curve for dynamic head versus discharge is plotted as shown in Fig. 5-29. Values for the curve are obtained as indicated in Sec. 5-11.
- Consider that three pumps will ultimately be needed (one as a standby). Determine the design flows as follows:

FIGURE 5-29. Solution for Example 5-6.

- 1 Two pumps at 1200 gpm at 80 ft of TDH
- 2 One pump at 1200/2 = 600 gpm at 80 ft of TDH
- One pump must also be able to meet the present requirements of 750 gpm at 60 ft of TDH.
- (c) From manufacturers' catalogs, two pumps, A and B, are found that will meet the specifications. The characteristic curves for each pump are shown in Fig. 5-29. The intersection of the characteristic curves with the system-head curve indicates that pump A can deliver 750 gpm at a TDH of 60 ft while pump B can deliver 790 gpm at a TDH of 62 ft. A check of the efficiency curves for each pump indicates that pump B will deliver the present flow at a much greater efficiency than pump A. Therefore, select pump B.

